MDC2020: Difference between revisions
Line 246: | Line 246: | ||
92 425 113819 dts.mu2e.EarlyEleBeamFlashCat.MDC2020p.art | 92 425 113819 dts.mu2e.EarlyEleBeamFlashCat.MDC2020p.art | ||
19 859 1151125 dts.mu2e.EarlyMuBeamFlashCat.MDC2020p.art | 19 859 1151125 dts.mu2e.EarlyMuBeamFlashCat.MDC2020p.art | ||
==Sim Datasets== | |||
Datasets from early stages of production are available for testing, including: | |||
sim.mu2e.MuminusStopsCat.MDC2020p.art Negative muon stops in the stopping target, used in muon daughter primary and pileup production campaigns | |||
sim.mu2e.IPAMuminusStopsCat.MDC2020r.art Negative muon stops in the IPA, used to produce calibration samples of Michel electrons | |||
sim.mu2e.MuplusStopsCat.MDC2020t.art Positive muon stops in the stopping target. There are only a few thousand of these and they are highly asymmetric | |||
==Older Datasets== | ==Older Datasets== |
Revision as of 01:14, 10 October 2023
Introduction
MDC2020 is an end-to-end production using updated geometry, detector simulations, persistent schema, and simulation workflows compared to MDC2018. The goal is to provide a reasonably complete and accurate model of what Mu2e will record during commissioning and first running period ('Run 1', add reference), including OnSpill, OffSpill, and Extracted Position samples. The primary intended use case of these samples are:
- Detector calibration and alignment, including cross-system (ie CRV to Calo) calibrations
- Detector commissioning
- Trigger algorithm testing and development
- TDAQ to Offline data transfer workflows
- Offline reconstruction algorithm development
- Science extraction framework and algorithm development
The samples have been produced using POMS.
Detector Geometry
The detector geometry and material configuration used in MDC2020 is documented in X (add reference). A brief description of the major features is included below.
Detector Response Simulation
The detector response simulations used for MDC2020 include detailed models of the micro-physics (below the level of the Geant4 energy deposition), and the translation of those processes into digital signals. Details are described in the notes referenced in the table below. Note that a detailed model of the timing distribution system is also part of the digitization model.
Simulation Workflow
Cosmic Simulation POMS campaign
The cosmic simulation creates a sample of cosmic rays with three different configurations:
- Standard position, magnetic field on
- Standard position, magnetic field off
- Extracted position, magnetic field off
Beam Simulation POMS campaign
The goal of the beam campaign is to generate the particles needed for mixing (muons, electrons, neutrals) starting from the protons on target (POT stage).
Digitization and mixing POMS campaign
For each primary (e.g. DIO, CeEndpoint, CePlusEndpoint, etc.) we run digitization and reconstruction with ("mix" output) and without beam mixing ("digi" output). The beam mixing stream is divided into three branches one per configuration ("perfect", "best", "reco").
To run mixing on a new primary you should use a clone of the production POMS campaign, substituting your primary for one of the existing (CeEndpont, etc). Note that the new primary must have been entered into the SAM database as part of MDC2020 production, preferably using a clone of the primary POMS campaign.
to TEST mixing, you can manually invoke the scripts, as in the following example:
> cd mymusedir > muse setup > setup dhtools > setup mu2etools > kx509 > vomsCert > git clone git@github.com:Mu2e/Production.git > source Production/Scripts/gen_Mix.sh CeEndpoint MDC2020 p r v perfect v2_0 1BB > mu2e -c CeEndpointMix1BB_000/cnf.mu2e.CeEndpointMix1BB.MDC2020v_perfect_v2_0.001210_00000000.fcl --nevts 10
Recent Campaigns
The most recent MDC2020 campaigns are detailed below along with their Offline and Production versions as well as any useful information:
Campaign | Offline ver | Production ver | Comments |
---|---|---|---|
MDC2020r | v00_09_02 | v10_15_01 | bug fix for digi stage |
MDC2020t | v10_17_00 | v00_09_11 | several updates to many directories |
MDC2020v | v10_20_00 | v00_12_00 | Special run (see below), not for standard physics studies! |
Current Datasets
These are the datasets currently available which correspond to the full 100% campaign. The three digi and reco configurations ("perfect", "best", "reco") correspond to three different detector conditions as described in DocDB 42036.
The digitization stream is divided into five parts: Signal, Diag, Trk, Calo, Untriggered, which are described in DocDB 41757. To obtain details (number of events, number of files, GB, etc.) about a dataset you can use the datasetSummary.sh script, available in the Production repository.
In the following summary, [stream] can be Untriggered, Calo, Signal, Diag, Trk and [purpose] can be perfect, best, startup. The digitization [digi] can be Mix[intensity] for mixed samples, OnSpill for unmixed samples. An [intensity] of 1BB corresponds to 1 booster proton batch, 2BB means 2 booster proton batches. MDC2020 also supports 'Low' intensity, but no production samples of that have been produced yet. 'Sequential' mixing is a special case where a fixed pattern of individual proton bunch intensities from a detailed beam slow extraction simulation is used instead of the lognormal intensity generator. Reconstructed (mcs) datasets are currently only available for Signal the stream.
NB: due to a configuration bug the CosmicLivetime data product was dropped from the dig and mcs datasets for MDC2020v production and earlier.
Digi | Reco |
---|---|
dig.mu2e.CeEndpoint[digi][stream].MDC2020r_[purpose]_v1_0.art | mcs.mu2e.CeEndpoint[digi]Signal.MDC2020r_[purpose]_v1_0.art |
dig.mu2e.CePlusEndpoint[digi][stream].MDC2020r_[purpose]_v1_0.art | mcs.mu2e.CePlusEndpoint[digi]Signal.MDC2020r_[purpose]_v1_0.art |
dig.mu2e.FlateMinus[digi][stream].MDC2020r_[purpose]_v1_0.art | mcs.mu2e.FlateMinus[digi]Signal.MDC2020r_[purpose]_v1_0.art |
dig.mu2e.FlatePlus[digi][stream].MDC2020r_[purpose]_v1_0.art | mcs.mu2e.FlatePlus[digi]Signal.MDC2020r_[purpose]_v1_0.art |
dig.mu2e.NoPrimary[digi][stream].MDC2020r_[purpose]_v1_0.art | mcs.mu2e.NoPrimary[digi]Signal.MDC2020r_[purpose]_v1_0.art |
dig.mu2e.PBINormal_33344MixSeq[stream].MDC2020r_[purpose]_v1_0.art |
mcs.mu2e.PBINormal_33344MixSeqSignal.MDC2020r_[purpose]_v1_0.art |
dig.mu2e.PBIPathological_33344MixSeq[stream].MDC2020r_[purpose]_v1_0.art | mcs.mu2e.PBIPathological_33344MixSeqSignal.MDC2020r_[purpose]_v1_0.art |
dig.mu2e.IPAMuminusMichel[digi][stream].MDC2020r_[purpose]_v1_0.art | mcs.mu2e.IPAMuminusMichel[digi]Signal.MDC2020r_[purpose]_v1_0.art |
dig.mu2e.IPAFlateMinus[digi][stream].MDC2020r_[purpose]_v1_0.art | mcs.mu2e.IPAFlateMinus[digi]Signal.MDC2020r_[purpose]_v1_0.art |
dig.mu2e.NoPrimaryMix2BB[digi][stream].MDC2020v.art | ... |
dig.mu2e.CosmicCORSIKAExtractedNoFieldTrk[stream].MDC2020r_[purpose]_v1_0.art (~1 hour of cosmic livetime) | |
dig.mu2e.CosmicCRYExtractedCatDigi*.MDC2020y_[stream]_v1_1.art (~10 hour of cosmic livetime) |
Reprocessed Reconstruction
In Sept 2023 several samples were remade from the digi-->reco stage to incorporate updates in reconstruction and db changes.
Digi | Reco | NTuple | Comments |
---|---|---|---|
dig.mu2e.CeEndpointMix1BBSignal.MDC2020r_best_v1_0.art | mcs.mu2e.CeEndpointMix1BBSignal.MDC2020z_best_v1_1.art | nts.mu2e.CeEndpointMix1BBSignalMix1BB.MDC2020z1_best_v1_1_std_v04_01_00.tka | |
dig.mu2e.FlateminusMix1BBSignal.MDC2020r_best_v1_0.art | mcs.mu2e.FlateminusMix1BBSignal.MDC2020z_best_v1_1.art | ||
dig.mu2e.CosmicCRYExtractedCatDigiTrk.MDC2020r.art | mcs.mu2e.CosmicCRYExtractedCatDigiTrk.MDC2020z.art | nts.mu2e.CosmicCRYExtractedTrk.MDC2020z1_best_v1_1_std_v04_01_00.tka | naming issue: best, v1_1
|
Special datasets
In order to assess the impact of a degraded field from coil 11 in the DS a special CeEndpoint campaign was run. In total 100K CeEndpoints were ran with the updated field map which was passed to the Mu2e/Offline code via the Production scripts. This is currently tagged as MDC2020v. Mixed and OnSpill samples were produced assuming 1BB mode of operation. The datasets with degraded DS field are:
Digi | Reco |
---|---|
dig.mu2e.CeEndpoint[digi][stream].MDC2020v_[purpose]_v1_0.art | mcs.mu2e.CeEndpoint[digi]Signal.MDC2020v_[purpose]_v1_0.art |
Argonne CRY datasets
These are CRY datasets produced by Yuri Oksuzian on the Argonne supercomputer
location records files MB events dataset
T 2237 2237 559 0 dig.mu2e.CosmicCRYhiOnSpillCalo.MDC2020r_perfect_v1_0.art T 2237 2237 559 0 dig.mu2e.CosmicCRYhiOnSpillDiag.MDC2020r_perfect_v1_0.art T 2237 2237 10494 137638 dig.mu2e.CosmicCRYhiOnSpillSignal.MDC2020r_perfect_v1_0.art T 2237 2237 2275 19387 dig.mu2e.CosmicCRYhiOnSpillTrk.MDC2020r_perfect_v1_0.art T 2237 2237 14472 891925 dig.mu2e.CosmicCRYhiOnSpillUntriggered.MDC2020r_perfect_v1_0.art T 200 200 1099 169 dig.mu2e.CosmicCRYhiSigFiltMix2BBCalo.MDC2020s_perfect_v1_0.art T 200 200 145 0 dig.mu2e.CosmicCRYhiSigFiltMix2BBDiag.MDC2020s_perfect_v1_0.art T 200 200 370173 87358 dig.mu2e.CosmicCRYhiSigFiltMix2BBSignal.MDC2020s_perfect_v1_0.art T 200 200 39523 9099 dig.mu2e.CosmicCRYhiSigFiltMix2BBTrk.MDC2020s_perfect_v1_0.art T 200 200 137872 30371 dig.mu2e.CosmicCRYhiSigFiltMix2BBUntriggered.MDC2020s_perfect_v1_0.art T 7897 7896 1964 0 dig.mu2e.CosmicCRYloOnSpillCalo.MDC2020r_perfect_v1_0.art T 7897 7897 1964 0 dig.mu2e.CosmicCRYloOnSpillDiag.MDC2020r_perfect_v1_0.art T 7897 7897 25841 392295 dig.mu2e.CosmicCRYloOnSpillSignal.MDC2020r_perfect_v1_0.art T 7897 7896 5609 45496 dig.mu2e.CosmicCRYloOnSpillTrk.MDC2020r_perfect_v1_0.art T 7897 7897 51348 4324567 dig.mu2e.CosmicCRYloOnSpillUntriggered.MDC2020r_perfect_v1_0.art T 213 213 14993 126613 mcs.mu2e.CosmicCRYhiOnSpillSignal.MDC2020r_perfect_v1_0.art T 196 196 29577 82601 mcs.mu2e.CosmicCRYhiSigFiltMix2BBSignal.MDC2020s_perfect_v1_0.art T 781 781 43287 379186 mcs.mu2e.CosmicCRYloOnSpillSignal.MDC2020r_perfect_v1_0.art
Flat Gamma Samples
The following samples were made with these changes to the ``PrimaryFilter":
- MinimumPartMom : 20.0 # MeV/c (nominal = 50)
- MinimumTrkSteps : 2 # primary must produce at least this many TrkSteps (nominal = 12)
- MinimumSumCaloStepE : 5.0 # or at least this much calo energy (nominal = 5)
A Flat photon 70-102 MeV/c spectrum was generated from initial stopped muons, detector steps and digi files are available:
- dts.mu2e.FlatGamma.MDC2020z_sm3.art
- dig.mu2e.FlatGammaOnSpillConv.MDC2020z_sm3_perfect_v1_0.art
Detector Background datasets
The final production background datasets for normal mixing are listed below. Note that normal workflows do not require you to ever directly access these: mixing jobs to use these should be configured using the Production/Scripts/gen_Mix.sh script.
files MB events dataset
9598 2948814 874688822 dts.mu2e.NeutralsFlashCat.MDC2020p.art 9700 211960 248809400 dts.mu2e.EleBeamFlashCat.MDC2020p.art 50 47481 43638457 dts.mu2e.MuStopPileupCat.MDC2020p.art 20 15659 22262973 dts.mu2e.MuBeamFlashCat.MDC2020p.art
The NeutralsFlashCat and EleBeamFlash datasets are quite large and require a lot of staging time and space
In addition, there are production background datasets for early digitization mixing listed below. Note there are no 'Early' MuStopPileup, as the standard dataset version of those works fine for early (>200ns) digitization mixing.
files MB events dataset
179 2279 521442 dts.mu2e.EarlyNeutralsFlashCat.MDC2020p.art 92 425 113819 dts.mu2e.EarlyEleBeamFlashCat.MDC2020p.art 19 859 1151125 dts.mu2e.EarlyMuBeamFlashCat.MDC2020p.art
Sim Datasets
Datasets from early stages of production are available for testing, including:
sim.mu2e.MuminusStopsCat.MDC2020p.art Negative muon stops in the stopping target, used in muon daughter primary and pileup production campaigns sim.mu2e.IPAMuminusStopsCat.MDC2020r.art Negative muon stops in the IPA, used to produce calibration samples of Michel electrons sim.mu2e.MuplusStopsCat.MDC2020t.art Positive muon stops in the stopping target. There are only a few thousand of these and they are highly asymmetric
Older Datasets
1% and 10% test datasets were produced when testing MDC2020, these still show up in samweb listings but have been superseded and should not be used anymore. This includes datasets with the following descriptions: MDC2020k MDC2020km MDC2020n_10h MDC2020n_10pc