EventDisplayTutorial
REve/Mu2e Event Display
Introduction
The REve/Mu2e Event Display is useful for visualizing the data or MC you are analyzing.
I have prepared two examples:
1) Visualize a CeEndpoint Mix sample 2) Visualize a Cosmic sample in Extracted mode
Before you start
You should have REve within the tutorial environment. If you are working on outside of the tutorial then you will need to clone and build the REve/Mu2e repo.
The first step is to modify your .rootrc in the working directory to the commands listed in the REve/README.md. Choose a number that is not 1234 for the port number and set this in your .rootrc. This will be the port that you will use to access the display once it's running. If you want a unique number, use the last four or five digits of your FNAL badge.
When running REve you must be in the working directory.
CeEndpoint
Firstly you should start with a simple example of a mixed CeEndpoint signal.
Look at the helix_example.fcl. If you are familiar with Mu2e data products you will recognize the options you can display. Pretty much any RecoDataProduct from Mu2e/Offline can be visualized including:
- ComboHits (panel hits)
- TrkStrawSeedHits (the hits used to make the track)
- TimeCluster
- Helix Seed (pattern recognition output for helix)
- KalSeed (Kalman track)
- CRVClusters and CRVRecoPulses
- CaloClusters and CaloHits
We also include one MC truth option:
- MCTrajectory
Before deciding what to visualize you should familiarize yourself with whats in your .art file (using something like Offline/Print/fcl/dumpdataProducts.fcl). By default REve uses the "get Many" functionality in art which means it displays all of the above products if they are in the .art file.
If you wish to only look at one product you can use the "specifyTag : true" option in your .fcl to select which specific tags you want to visualize e.g. for a downstream kinkal electron fit you may only want to look at "KalSeedCollection : ["KKDeM"]".
For the purpose of the tutorial, we will use the default configuration.
There is also a set of "geom options" that decide what parts of the Mu2e geometry are shown. By default you will see the following:
- IPA and OPA (inner and outer proton absorbers) - the most interesting feature is the conical shape of the OPA
- Stopping target - you will notice the foil structure and can zoom in close to see a given foil. The target is not visible in extracted mode.
- Tracker planes - individual straws can be displayed using the "strawdisplay : true" option
- Calorimeter disk and crystals
There are then several optional geometry objects:
- CRV - the cosmic ray veto system
- PS and TS and DS - the magnets
- Production Target
- STM
The latter two need further development.
Task 1a: View all products
Without altering the fcl run the following command:
mu2e -c REve/examples/helix_example.fcl /pnfs/mu2e/tape/phy-sim/mcs/mu2e/CeEndpointMix1BBSignal/MDC2020z_best_v1_1/art/01/94/mcs.mu2e.CeEndpointMix1BBSignal.MDC2020z_best_v1_1.001210_00000787.art
If you see and input/output error this might mean that the file needs to be prestaged: https://mu2ewiki.fnal.gov/wiki/Prestage
If run successfully you should see a series of print statements and a pause. There will be a list of geometry options with "1" indicating that option is set to "true."
If you are on the FNAL site, open a browser on your local machine and copy the URL (something like http://localhost:1234/win1/) change this to something like (http://mu2egpvm02.fnal.gov:1234/win1/).
If you are off-site you will need to set a ssh tunnel using a local browser on your laptop, something like:
ssh -KXY -L 1234:mu2egpvm01.fnal.gov:1234 user@mu2egpvm01.fnal.gov
change "1234" to the number you are given by ROOT, or that you chose in your .rootrc. Then something like http://localhost:1234/win1/ in the local browser should now display the event.
You should see an image of the CEEndpoint with pileup. By default the MC trajectory, KalSeed and CaloClusters and CaloCrystals are shown).
Hover over objects to find information about them. Use the "Next Event" to skip (do this slowly).
Once finished select the "Quit" button to exit and close out the browser and kill the job on the mu2e machines.
Task 1b: Try a different view
You will have noticed that as well as the 3D view there are also a set of possible 2D views.
The tracker XY and YZ are there first two.
Try going to these views by selecting "view" and "TrackerXY" and then "single".
You should now see an enlarged view of the Tracker XY plane.
To go back to 3D use the back arrows.
Extracted
During first data taking we will view cosmic muons in an extracted positon. Here the Calo and Tracker are outside the solenoids and a few sections of the CRV are placed above.
Task 2: Viewing extracted cosmics
Extracted mode means the tracker and calorimeter are outside the solenoid. We want to visualize straight cosmics in this mode.
mu2e -c REve/examples/extracted_example.fcl /pnfs/mu2e/scratch/users/brownd/workflow/default/outstage/3553474/00/00000/mcs.brownd.CosmicCRYExtractedCatDigiTrk.MDC2020z.001205_00000012.art
Try with the default setting, select Next Event (slowly) until you see the events with visible CRV bar hits.
You can try "Quitting" once you see that event.
Try setting MCTraj : false in the extracted_example.fcl and rerun. You are now looking at a reconstructed Kalman track known as a Kinematic Line fit in KinKal.